Как прибавлять дроби с разными знаменателями

Обыкновенные дроби

Доля — это каждая равная часть, из суммы которых состоит целый предмет.

Для примера возьмем два мандарина. Когда мы их почистим, то получим в каждом мандарине разное количество долек или долей. В одном может быть 6, а в другом — целых 9. Размеры долей у каждого мандарина тоже разные.

У каждой доли есть свое название: оно зависит от количества долей в конкретном предмете. Если в мандарите шесть долей — каждая из них будет определяться, как одна шестая от целого.

  • Половина — одна вторая доля предмета или 1/2.
  • Треть — одна третья доля предмета или 1/3.
  • Четверть — одна четвертая доля предмета или 1/4.

Понятие доли можно применить не только к предметам, но и величинам. Так, например, картина занимает четверть стены — при этом ее ширина треть метра.

Чтобы быстрее запомнить соотношения частей и целого, можно использовать наглядную табличку:

1 Сложение и вычитание дробей с одинаковыми знаменателями

Чтобы сложить дроби с одинаковыми знаменателями, надо сложить их числители, а знаменатель оставить тот же, например:

др24

Чтобы вычесть дроби с одинаковыми знаменателями, надо из числителя первой дроби вычесть числитель второй дроби, а знаменатель оставить тот же, например:

др25

Чтобы сложить смешанные дроби, надо отдельно сложить их целые части, а затем сложить их дробные части, и записать результат смешанной дробью,

Если при сложении дробных частей получилась неправильная дробь, выделяем из нее целую часть и прибавляем ее к целой части, например:

др28

Как прибавлять дроби с разными знаменателями

Калькулятор дробей выполнит основные арифметические действия с дробями и смешанными числами.

Если целая часть заполнена, калькулятор приведет смешанное число в неправильную дробь и выполнит операцию.

Заполните поля калькулятора чтобы найти сумму, разность, произведение и отношение дробей.

Основные операции с дробями

Сложение и вычитание

Чтобы сложить дроби с разными знаменателями необходимо: привести дробные части к наименьшему общему знаменателю; затем сложить их числители. Рассмотрим на примере как сложить две дроби с разными знаменателями.

Пример Сложить дроби дробь одна восьмаяи дробь пять шестых

результат сложения дробей одна восьмая плюс дробь пять шестых.

Наименьшее общее кратное знаменателей (8 и 6) равно 24.

Для нахождения разности дробей необходимо: привести дробные части к наименьшему общему знаменателю; затем выполнить вычитание числителей.

Пример Найти разность дробей дробь девять шестнадцатыхи семть двадцатых

разность дробей девять шестнадцатых минус семь двадцатых.

Общее кратное знаменателей НОК(16, 20)=80. Для вычисления наименьшего общего кратного можно воспользоваться калькулятором. Калькулятор вычислит НОК автоматически.

Умножение и деление

Для умножения двух дробей нужно: перемножить их числители и знаменатели правило умножения дробей.

Пример Найти произведение дробей дробь семь восемнадцатыхи дробь три четвертых

умножение дробей: семь восьмых на три четвертых.

Чтобы разделить дробь на другую нужно: умножить первую дробь на дробь, обратную второй: деление дробей.

Пример Разделить дробь дробь четыре пятыхна дробь три десятых

деление дробей четыре пятых на три десятых.

Приведение к общему знаменателю

Чтобы совершать операции с дробями часто требуется привести дроби к общему знаменателю. Рассмотрим процесс приведения двух дробей дробь три восьмыхи пять двенадцатыхк наименьшему общему знаменателю :

  • 1 Находим наименьшее общее кратное знаменателей: НОК(8, 12)=24. Число 24 является наименьшим общим знаменателем двух дробей, приведем обе дроби к данному знаменателю. Любые две дроби можно привести к одинаковому знаменателю.
  • 2 Вычисляем дополнительный множитель первой дроби вычисляем дополнительный множитель для дроби 3/8. Умножаем числитель и знаменатель на дополнительный множитель 3, получаем дробь дробь 3/8 преобразуем в 9/24 путем умножения на 3.
  • 3 Вычислим дополнительный множитель второй дроби вычисляем дополнительный множитель для дроби 5/12. Умножаем числитель и знаменатель на дополнительный множитель 2, получаем дробь дробь 5/12 преобразуем в 10/24 путем умножения на 2.
  • 4 В результате получим дроби дробь 9/24и дробь 10/24с одинаковым знаменателем равным 24.
Пример Сравнить дроби дробь семь восемнадцатыхи дробь три четвертых

Для сравнения дробей приведем их к общему знаменателю и сравним их числители. Воспользуемся шагами описанными выше и найдем наименьшее общее кратное знаменателей дробей и далее преобразуем:

сравнение дробей: 7/18 и 3/4.

НОК(18, 4)=36, дополнительный множитель первой дроби дополнительный множитель дроби 7/18, доп. множитель второй дроби дополнительный множитель дроби 3/4.

Основное свойство дроби

Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится равная ей дробь.

Дроби. Вычитание дробей.

Для нахождения разницы 2х дробей с одинаковыми знаменателями, необходимо вычесть из числителя 1й дроби числитель 2й дроби, а знаменатель обоих дробей оставить не изменяя. Вычитание обыкновенных дробей:

Дроби. Вычитание дробей.

Обратите внимание! Перед тем как написать окончательный ответ, посмотрите, может можно сократить дробь, которую вы получили.

Вычитание дробей с одинаковыми знаменателями, примеры:

Дроби. Вычитание дробей.

,

Дроби. Вычитание дробей.

,

Дроби. Вычитание дробей.

Сложение дробей с одинаковыми знаменателями.

На примере посмотрим, как складывать дроби с общим знаменателем.

Туристы пошли в поход из точки A в точку E. В первый день они прошли от точки A до B или (frac) от всего пути. Во второй день они прошли от точки B до D или (frac) от всего пути. Какое расстояние они прошли от начала пути до точки D?

Сложение дробей

Решение:

Чтобы найти расстояние от точки A до точки D нужно сложить дроби (frac + frac).

Сложение дробей с одинаковыми знаменателями заключается в том, что нужно числители этих дробей сложить, а знаменатель останется прежний.

В буквенном виде сумма дробей с одинаковыми знаменателями будет выглядеть так:

Ответ: туристы прошли (frac) всего пути.

Основные свойства дробей

1. Дробь не имеет значения, при условии, если делитель равен нулю.

2. Дробь равняется нулю в том случае, если числитель равен нулю, а знаменатель отличен от нуля.

3. Равными называются такие a/b и c/d, если:

  • a * d = b * c.

4. Если числитель и знаменатель умножить или разделить на одно и то же натуральное число, то получится равная ей дробь.

Как устроена обыкновенная дробь

Обыкновенная дробь — это запись вида m/n, где m и n любые натуральные числа.

Такие дроби записываются с помощью двух натуральных чисел и горизонтальной черты, которая называется чертой дроби. Иногда ставится не горизонтальная черта, а косая.

Числитель обыкновенной дроби m/n — это натуральное число m, которое стоит над чертой. Числитель это делимое — то, что мы делим.

Знаменатель обыкновенной дроби m/n — натуральное число n, которое стоит под чертой. Знаменатель это делитель — то, на сколько делим.

Черта между числителем и знаменателем — символ деления.

Равные обыкновенные дроби — обыкновенные дроби a/b и c/d, для которых справедливо равенство: a * d = b * c. Пример равных дробей: 1/2 и 2/4, так как 1 * 4 = 2 * 2.

Неравные обыкновенные дроби — обыкновенные дроби a/b и c/d, для которых равенство: a * d = b * c не является верным.

3 Наименьшее общее кратное (НОК)

Наименьшее общее кратное двух чисел (НОК) — это наименьшее натуральное число, которое делится на оба эти числа без остатка. Иногда НОК можно подобрать устно, но чаще, особенно при работе с большими числами, приходится находить НОК письменно, с помощью следующего алгоритма:

Для того, чтобы найти НОК нескольких чисел, нужно:

  1. Разложить эти числа на простые множители
  2. Взять самое большое разложение, и записать эти числа в виде произведения
  3. Выделить в других разложениях числа, которые не встречаются в самом большом разложении (или встречаются в нем меньшее число раз), и добавить их к произведению.
  4. Перемножить все числа в произведении, это и будет НОК.

Например, найдем НОК чисел 28 и 21:

др22

Как плюсовать дроби

Сложение — это арифметическое действие, в результате которого получается новое число. Оно содержит в себе сумму заданных чисел.

Свойства сложения

  • От перестановки мест слагаемых сумма не меняется: a + b = b + a.
  • Чтобы к сумме двух чисел прибавить третье нужно к первому числу прибавить сумму второго и третьего числа: (a + b) + c = a + (b + c).
  • Если к числу прибавить ноль, получится само число: a + 0 = 0 + a = a
  • При сложении числа можно переставлять и объединять в группы, результат от этого не изменится.

Давайте рассмотрим несколько вариантов сложения обыкновенных дробей.

Сложение смешанных чисел (смешанных дробей).

Правила сложения смешанных дробей:

  • приводим дробные части этих чисел к наименьшему общему знаменателю (НОЗ);
  • отдельно складываем целые части и отдельно дробные части, складываем результаты;
  • если при сложении дробных частей получили неправильную дробь, выделяем целую часть из этой дроби и прибавляем ее к полученной целой части;
  • сокращаем полученную дробь.

Пример сложения смешанной дроби :

Дроби. Сложение дробей.

Вычитание правильной дроби из целого числа.

Правила вычитания дробей – правильной из целого числа (натурального числа) :

  • Переводим заданные дроби, которые содержат целую часть, в неправильные. Получаем нормальные слагаемые (не важно если они с разными знаменателями), которые считаем по правилам, приведенным выше;
  • Далее вычисляем разность дробей, которые мы получили. В результате мы почти найдем ответ;
  • Выполняем обратное преобразование, то есть избавляемся от неправильной дроби – выделяем в дроби целую часть.

Вычтем из целого числа правильную дробь: представляем натуральное число в виде смешанного числа. Т.е. занимаем единицу в натуральном числе и переводим её к виду неправильной дроби, знаменатель при этом такой же, как у вычитаемой дроби.

Пример вычитания дробей:

Дроби. Вычитание дробей.

В примере единицу мы заменили неправильной дробью 7/7 и вместо 3 записали смешанное число и от дробной части отняли дробь.

4 Приведение дробей к одному знаменателю

Вернемся к сложению дробей с разными знаменателями.

Когда мы приводим дроби к одинаковому знаменателю, равному НОК обоих знаменателей, мы должны умножить числители этих дробей на дополнительные множители. Найти их можно, разделив НОК на знаменатель соответствующей дроби, например:

др29

Таким образом, чтобы привести дроби к одному показателю, нужно сначала найти НОК (то есть наименьшее число, которое делится на оба знаменателя) знаменателей этих дробей, затем поставить дополнительные множители к числителям дробей. Найти их можно, разделив общий знаменатель (НОК) на знаменатель соответствующей дроби. Затем нужно умножить числитель каждой дроби на дополнительный множитель, а знаменателем поставить НОК.

Сложение смешанных чисел или смешанных дробей.

Сложение смешанных дробей происходит по закону сложения.

У смешанных дробей складываем целые части с целыми и дробные части с дробными.

Если дробные части смешанных чисел имеют одинаковые знаменатели, то числители складываем, а знаменатель остается тот же.

Сложим смешанные числа (3frac) и (1frac).

Если дробные части смешанных чисел имею разные знаменатели, то находим общий знаменатель.

Выполним сложение смешанных чисел (7frac) и (2frac).

Знаменатель разный, поэтому нужно найти общий знаменатель, он равен 24. Умножим первую дробь (7frac) на дополнительный множитель 3, а вторую дробь (2frac) на 4.

Вопросы по теме:
Как складывать дроби?
Ответ: сначала надо определиться к какому типу относиться выражение: у дробей одинаковые знаменатели, разные знаменатели или смешанные дроби. В зависимости от типа выражения переходим к алгоритму решения.

Как решать дроби с разными знаменателями?
Ответ: необходимо найти общий знаменатель, а дальше по правилу сложения дробей с одинаковыми знаменателями.

Как решать смешанные дроби?
Ответ: складываем целые части с целыми и дробные части с дробными.

Пример №1:
Может ли сумма двух правильных дробей в результате получить правильную дробь? Неправильную дробь? Приведите примеры.

Дробь (frac) это правильная дробь, она является результатом суммы двух правильных дробей (frac) и (frac).

Дробь (frac) является неправильной дроби, она получилась в результате суммы правильных дробей (frac) и (frac).

Ответ: на оба вопроса ответ да.

Пример №2:
Сложите дроби: а) (frac + frac) б) (frac + frac).

Пример №3:
Запишите смешанную дробь в виде суммы натурального числа и правильной дроби: а) (1frac) б) (5frac)

Пример №4:
Вычислите сумму: а) (8frac + 2frac) б) (2frac + frac) в) (7frac + 3frac)

а) (8frac + 2frac = (8 + 2) + (frac + frac) = 10 + frac = 10frac)

Задача №1:
За обедам съели (frac) от торта, а вечером за ужином съели (frac). Как вы думаете торт полностью съели или нет?

Решение:
Знаменатель дроби равен 11, он указывает на сколько частей разделили торт. В обед съели 8 кусочков торта из 11. За ужином съели 3 кусочка торта из 11. Сложим 8 + 3 = 11, съели кусочков торта из 11, то есть весь торт.

Порядок действий при вычитании дробей с разными знаменателями.

  • найти НОК для всех знаменателей;
  • поставить для всех дробей дополнительные множители; все числители на дополнительный множитель;
  • полученные произведения записываем в числитель, подписывая под всеми дробями общий знаменатель;
  • произвести вычитание числителей дробей, подписывая под разностью общий знаменатель.

Таким же образом проводится сложение и вычитание дробей при наличии в числителе букв.

Вычитание дробей, примеры:

Дроби. Вычитание дробей.

5 Как сложить целое число и дробь

Для того, чтобы сложить целое число и дробь, нужно просто добавить это число перед дробью, при этом получится смешанная дробь, например:

др30

Если мы складываем целое число и смешанную дробь, мы прибавляем это число к целой части дроби, например:

Действия с дробями

С дробями можно выполнять те же действия, что и с обычными числами: складывать, вычитать, умножать и делить. А еще дроби можно сокращать и сравнивать между собой. Давайте попробуем.

Общий вариант. Вычитание дробных выражений.

Предположим, есть такое задание:

Приводим к общему знаменателю. При помощи умножения. Поэтому мы не можем в первой дроби в знаменателе к иксу прибавить единицу. Зато можно перемножить знаменатели.

Скобки не открываем! Для того, чтобы в первой дроби получился знаменатель х(х+1), необходимо числитель и знаменатель домножить на (х+1). А во второй дроби – на х. Результат:

Обратите внимание! У нас появились скобки! Здесь нужно быть очень внимательным. Скобки появляются из-за того, что умножается весь числитель и весь знаменатель.

В числителе от правой части пишем сумму числителей, дальше раскрываем скобки в числителе от правой части, то есть умножаем все и приводим подобные. В знаменателе скобки не раскрываем. В знаменателях принято оставлять произведение. Получаем:

Сокращение дробей

Сокращение дроби — это деление числителя и знаменателя дроби на одно и то же натуральное число. Сократить дробь значит сделать ее короче и проще для восприятия. Например, дробь 1/3 выглядит намного проще и красивее, чем 27/81.

Сокращение дроби выглядит так: зачеркивают числитель и знаменатель, а рядом записывают результаты деления числителя и знаменателя на одно и то же число.

До и после сокращения

В этом примере делим обе части дроби на двойку.

Сравнение дробей

Можно никуда не спешить и сокращать дроби последовательно, в несколько действий.

Сравнение дробей

Оцените статью
Рейтинг автора
4,8
Материал подготовил
Егор Новиков
Наш эксперт
Написано статей
127
А как считаете Вы?
Напишите в комментариях, что вы думаете – согласны
ли со статьей или есть что добавить?
Добавить комментарий