Какова размерность коэффициента вязкости жидкости

Вязкость жидкости

Аспекты деятельности процесса внутреннего трения в газообразных и жидкостных веществах вместе с этим состоит в перенесении беспорядочно передвигающихся молекул импульса от слоя к слою, что, равным образом, предоставляет возможность выравнивать скорости (ввод термина сила трения). Следовательно, вязкость твёрдых тел оснащена большим комплектом индивидуальных свойств.

Вязкость жидкости. Методы определения вязкости жидкости

В промышленности, научной деятельности часто необходимо вычислить коэффициент вязкости жидкости. Работа с обычными или дисперсными средами в виде аэрозолей, газовых эмульсий требует знаний о физических свойствах этих веществ.

Коэффициент вязкости. Коэффициент динамической вязкости. Физический смысл коэффициента вязкости

Коэффициент вязкости – это ключевой параметр рабочей жидкости либо газа. В физических терминах вязкость может быть определена как внутреннее трение, вызываемое движением частиц, составляющих массу жидкой (газообразной) среды, или, более просто, сопротивлением движению.

коэффициент вязкости

Методы измерения вязкости жидкостных веществ

Выполнение процедуры определения вязкости жидкостных веществ принято называть вискозиметрией. На сегодняшний день измерение вязкости жидкостных веществ является вероятным благодаря очередным четырём методикам:

  1. Капиллярная методика. При выполнении данной методики необходимо присутствие двух ёмкостей, соединённых благодаря совокупности каналов из стекла с большим радиусом и достаточной длинны. Одновременно необходимы начальное представление о величине давления во всех ёмкостях. Жидкостное вещество размещается в канале из стекла, и данная жидкость конкретное время переливается из ёмкости в ёмкость. Последующие расчёты производятся с помощью уравнения Пуазейля (нахождение коэффициента вязкости жидкости). Инновационные вискозиметры производятся из сырья высокого качества и стойкости, которое способно переносить высокую температуры.
  2. Медицинская методика по Гессе. Для выполнения вычислений вязкости жидкостных веществ данным способом, необходимо присутствие двух одинаковых капиллярных устройств. В одном устройстве располагается среда с изначально установленной величиной внутреннего трения, а в другом расположена изучаемое жидкостное вещество. Далее производятся измерения двух величин времени и создание соотношения, благодаря которому присутствует возможность определиться с необходимым результатом.
  3. Ротационная методика необходимо присутствие устройства из цилиндров, имеющих общую ось вращения. Данная конструкция предусматривает расположение первого цилиндра во втором. Между цилиндрами вливается жидкостное вещество, после чего к цилиндру, который находится внутри прикладывается усилие с конкретной скоростью. Эта скорость передаётся жидкостному веществу, и вязкость будет определена с помощью различия в силе момента.
  4. Методика Стокса. Выполнение данного эксперимента потребует присутствия вискозиметра Гепплера, который представляет наполненный жидкостным веществом цилиндрическую ёмкость. Перед осуществлением данного опыта на цилиндрической ёмкости производятся две отметки, и после проведения опыта определяется расстояние между отметками. Далее погружается в жидкостное вещество шарик конкретного диаметра. Чтобы рассчитать скорость снижения положения шарика, засекается время его погружения от первой отметки к второй. Зная скорость погружения шарика, предоставляется возможность рассчитать вязкость жидкостного вещества.

Ньютоновские и неньютоновские среды

Ньютоновская жидкость – это такая жидкость, вязкость которой можно высчитать с помощью формулы Ньютона.

К таким средам относятся вода и растворы. Коэффициент вязкости жидкости в таких средах может зависеть от таких факторов, как температура, давление или строение атома вещества, однако градиент скорости всегда останется неизменным.

коэффициент вязкости жидкости

Неньютоновские жидкости – это такие среды, в которых упомянутое выше значение может изменяться, а значит, формула Ньютона здесь действовать не будет. К таким веществам относятся все дисперсные среды (эмульсии, аэрозоли, суспензии). Сюда же относится и кровь. Об этом более подробно поговорим далее.

Коэффициент вязкости: формула

В упрощенном виде процесс движения вязкой жидкости в трубопроводе можно рассмотреть в виде плоских параллельных слоев А и В с одинаковой площадью поверхности S, расстояние между которыми составляет величину h.

определение коэффициента вязкости жидкости

Эти два слоя (А и В) перемещаются с различными скоростями (V и V+ΔV). Слой А, имеющий наибольшую скорость (V+ΔV), вовлекает в движение слой B, движущийся с меньшей скоростью (V). В то же время слой B стремится замедлить скорость слоя А. Физический смысл коэффициента вязкости заключается в том, что трение молекул, представляющих собой сопротивление слоев потока, образует силу, которую Исаак Ньютон описал следующей формулой:

  • ΔV – разница скоростей движений слоев потока жидкости;
  • h – расстояние между слоями потока жидкости;
  • S – площадь поверхности слоя потока жидкости;
  • μ (мю) – коэффициент, зависящий от свойства жидкости, называется абсолютной динамической вязкостью.

В единицах измерения системы СИ формула выглядит следующим образом:

Здесь F – сила тяжести (вес) единицы объема рабочей жидкости.

Величина вязкости

В большинстве случаев коэффициент динамической вязкости измеряется в сантипуазах (сП) в соответствии с системой единиц СГС (сантиметр, грамм, секунда). На практике вязкость связана соотношением массы жидкости к ее объему, то есть с плотностью жидкости:

  • ρ – плотность жидкости;
  • m – масса жидкости;
  • V – объем жидкости.

Отношение между динамической вязкостью (μ) и плотностью (ρ) называется кинематической вязкостью ν (ν – по-гречески – ню):

Кстати, методы определения коэффициента вязкости разные. Например, кинематическая вязкость по-прежнему измеряется в соответствии с системой СГС в сантистоксах (сСт) и в дольных величинах – стоксах (Ст):

  • 1Ст = 10 -4 м 2 /с = 1 см 2 /с;
  • 1сСт = 10 -6 м 2 /с = 1 мм 2 /с.

Применение вязкость на практике

На сегодняшний день вискозиметры производятся из высокопрочного сырья, и их изготовление настаивает на применении инновационных технологий. Благодаря этому предоставляется возможность выполнять требуемые измерения при значительных температурных параметрах и большом давлении, не подвергая аппаратуру выходу со строя. Вязкость жидкостных веществ имеет огромное значение практически во всех отраслях производства, так как транспортирование, добывание и обработка различного сырья и материалов имеют зависимость от величины внутреннего трения жидкости.

Вязкость жидкостных веществ является ключевым значением и в медицине непосредственно, и для её аппаратуры, в частности. Попадание газовых веществ с помощью эндо-трахеальной трубки имеет зависимость от внутреннего трения конкретного газового вещества. В данной ситуации различно будет происходить отражение преобразования величины вязкости среды на проникании воздуха сквозь аппаратуру (зависит от структуры газового вещества).

Сложно разобраться самому?

Попробуй обратиться за помощью к преподавателям

Производство вакцинации и ввод разнообразных лекарств с помощью шприца, в свою очередь, является ярчайшим образцом воздействия вязкости среды. В данном случае говорится о перепадах давления на окончании иглы шприца во время введения лекарственных препаратов, невзирая на то, что начально было пренебрежено этим явлением. Образование повышенного давления на конце иголки шприца является результатом влияние внутреннего трения.

Из этого следует, что вязкость многих веществ является одной из физических величин, которая обладает огромным использованием на практике. В разнообразных сферах деятельности (особенно в производстве) понятие внутреннего трения и вязкости веществ упоминается очень частенько. В частности, работа простого медицинской или экспериментальной аппаратуры в лабораторных условиях зависит от уровня вязкости среды, которые используются в экспериментах и на практике.

Кровь как внутренняя среда организма

Как известно, 80 % крови составляет плазма, которая имеет жидкое агрегатное состояние, а остальные 20 % – это эритроциты, тромбоциты, лейкоциты и различные включения. Эритроциты человека имеют диаметр 8 нм. В неподвижном состоянии они формируют агрегаты в виде монетных столбиков, при этом существенно повышают вязкость жидкости. Если ток крови активен, эти «конструкции» распадаются, а внутреннее трение, соответственно, уменьшается.

Измерение вязкости на вискозиметре с падающим шариком

Измерение вязкости путем определения скорости падения шарика в жидкости проводят с помощью вискозиметра Гепплера (рис. 4).

На рис. 4 показан общий вид вискозиметра с падающим шариком. В комплект вискозиметра входят шарики с диаметром от 10,00 до 15,80 мм, что обеспечивает измерение динамической вязкости градуировочных жидкостей в диапазоне от 0,6 до 8∙104 мПа∙с.

Вискозиметр с падающим шариком. 1 – калибровочные отметки; 2 – шарик.

Рисунок 4. Вискозиметр с падающим шариком. 1 – калибровочные отметки; 2 – шарик.

Методика. Для измерения вязкости испытуемую жидкость заливают в трубку, опускают шарик и термостатируют вискозиметр в течение примерно 30 мин при температуре (20 ± 0,1) оС, если не указано иначе в фармакопейной статье. Далее шарик ставят в исходное положение. Включают секундомер, когда нижняя часть шарика коснется верхней метки, и останавливают, когда шарик достигнет нижней метки. Время движения шарика измеряют не менее 5 – 7 раз. При этом разность между наибольшим и наименьшим значениями времени движения шарика не должна превышать 0,5 % от его среднего значения.

Динамическую вязкость испытуемой жидкости вычисляют по формуле:

Постоянная вискозиметра (К) определяется по формуле:

где η0 – динамическая вязкость градуировочной жидкости, мПа ∙ с ;

ρш и ρ – плотности шарика и градуировочной жидкости соответственно, г/см 3 ;

t0ср – среднее значение времени движения данного шарика в градуировочной жидкости, с.

Число постоянных вискозиметра соответствует числу шариков, входящих в комплект вискозиметра.

При необходимости постоянные прибора могут быть проверены по вышеуказанной формуле с помощью градуировочных жидкостей с известными значениями динамической вязкости. Плотность шариков ρш вычисляют по формуле:

где m – масса шарика, определяемая взвешиванием, г;

d – диаметр шарика, см.

Перед проведением измерений вискозиметр следует тщательно промыть и высушить.

Коэффициенты вязкости среды

Взаимодействие слоев среды друг на друга сказывается на характеристиках всей системы жидкости или газа. Вязкость – это один из примеров такого физического явления, как трение. Благодаря ей верхние и нижние слои среды постепенно выравнивают скорости своего тока, и в конечном итоге она приравнивается к нулю. Также вязкость можно характеризовать как сопротивление одного слоя среды другому.

Для описания таких явлений выделяют две качественные характеристики внутреннего трения:

  • динамический коэффициент вязкости (динамическая вязкость жидкости);
  • кинетический коэффициент вязкости (кинетическая вязкость).

Обе величины связаны уравнением υ = η / ρ, где ρ – плотность среды, υ – кинетическая вязкость, а η – динамическая вязкость.

динамическая вязкость жидкости

Вискозиметры

Вязкость измеряется в градусах Энглера (°Е), универсальных секундах Сейболта (“SUS) или градусах Редвуда (°RJ) в зависимости от типа применяемого вискозиметра. Три типа вискозиметров отличаются только количеством вытекающей жидкой среды.

Вискозиметр, измеряющий вязкость в европейской единице градус Энглера (°Е), рассчитан на 200 см 3 вытекающий жидкой среды. Вискозиметр, измеряющий вязкость в универсальных секундах Сейболта (“SUS или “SSU), используемый в США, содержит 60 см 3 испытываемой жидкости. В Англии, где используются градусы Редвуда (°RJ), вискозиметр проводит измерения вязкости 50 см 3 жидкости. Например, если 200 см 3 определенного масла течет в десять раз медленнее, чем аналогичный объем воды, то вязкость по Энглеру составляет 10°Е.

Поскольку температура является ключевым фактором, изменяющим коэффициент вязкости, то измерения обычно проводятся сначала при постоянной температуре 20°С, а затем при более высоких ее значениях. Результат, таким образом, выражается путем добавления соответствующей температуры, например: 10°Е/50°С или 2,8°Е/90°С. Вязкость жидкости при 20°С выше, чем ее вязкость при более высоких температурах. Гидравлические масла имеют следующую вязкость при соответствующих температурах:

190 сСт при 20°С = 45,4 сСт при 50°С = 11,3 сСт при 100°С.

коэффициент вязкости воды

Практическое применение вискозиметрам

Определение вязкости жидкости имеет большое практическое значение в нефтеперерабатывающей промышленности. При работе с многофазными, дисперсными средами важно знать их физические свойства, особенно внутреннее трение. Современные вискозиметры сделаны из прочных материалов, при их производстве задействуются передовые технологии. Все это в совокупности позволяет работать с высокой температурой и давлением без вреда для самого оборудования.

Вязкость жидкости играет большую роль в промышленности, потому что транспортировка, переработка и добыча, например, нефти зависят от значений внутреннего трения жидкостной смеси.

методы определения вязкости жидкости

Перевод значений

Определение коэффициента вязкости происходит в разных системах (американской, английской, СГС), и поэтому часто требуется перевести данные из одной мерной системы в другую. Для перевода значений вязкости жидкости, выраженных в градусах Энглера, в сантистоксы (мм 2 /с) используют следующую эмпирическую формулу:

  • 2°Е = 7,6 × 2 × (1-1/23) =15,2 × (0,875) = 13,3 сСт;
  • 9°Е = 7,6 × 9 × (1-1/93) =68,4 × (0,9986) = 68,3 сСт.

С целью быстрого определения стандартной вязкости гидравлического масла формула может быть упрощена следующим образом:

Имея кинематическую вязкость ν в мм 2 /с или сСт, можно перевести ее в коэффициент динамической вязкости μ, используя следующую зависимость:

Пример. Суммируя различные формулы перевода градусов Энглера (°Е), сантистоксов (сСт) и сантипуазов (сП), предположим, что гидравлическое масло с плотностью ρ=910 кг/м 3 имеет кинематическую вязкость 12°Е, что в единицах сСт составляет:

ν = 7,6 × 12 × (1-1/123) = 91,2 × (0,99) = 90,3 мм 2 /с.

Поскольку 1сСт = 10 -6 м 2 /с и 1сП = 10 -3 Н×с/м 2 , то динамическая вязкость будет равна:

коэффициент вязкости газа

Какую роль играет вязкость в медицинском оборудовании?

Поступление газовой смеси через эндотрахеальную трубку зависит от внутреннего трения этого газа. Изменение значений вязкости среды здесь по-разному отражается на проникновении воздуха через аппарат и зависит от состава газовой смеси.

Введение лекарственных препаратов, вакцин через шприц тоже является ярким примером действия вязкости среды. Речь идет о перепадах давления на конце иголки при впрыскивании жидкости, хотя изначально полагали, что этим физическим явлением можно пренебречь. Возникновение высокого давления на наконечнике – это результат действия внутреннего трения.

Заключение

Вязкость среды – это одна из физических величин, которая имеет большое практическое применение. В лаборатории, промышленности, медицине – во всех этих сферах понятие внутреннего трения фигурирует очень часто. Работа простейшего лабораторного оборудования может зависеть от степени вязкости среды, которая используется для исследований. Даже перерабатывающая промышленность не обходится без знаний в области физики.

Измерение и индексация

В соответствии с международными стандартами ISO, коэффициент вязкости воды (и прочих жидких сред) выражается в сантистоксах: сСт (мм 2 /с). Измерения вязкости технологических масел должны проводиться при температурах 0°С, 40°С и 100°С. В любом случае в коде марки масла вязкость должна указываться цифрой при температуре 40°С. В ГОСТе значение вязкости дается при 50°С. Марки, наиболее часто применяемые в машиностроительной гидравлике, варьируются от ISO VG 22 до ISO VG 68.

Гидравлические масла VG 22, VG 32, VG 46, VG 68, VG 100 при температуре 40°С имеют значения вязкости, соответствующие их маркировке: 22, 32, 46, 68 и 100 сСт. Оптимальная кинематическая вязкость рабочей жидкости в гидросистемах лежит в диапазоне от 16 до 36 сСт.

Американское Общество автомобильных инженеров (Society of Automotive Engineers – SAE) установило диапазоны изменения вязкости при конкретных температурах и присвоило им соответствующие коды. Цифра, следующая за буквой W, – абсолютный динамический коэффициент вязкости μ при 0°F (-17,7°С), а кинематическая вязкость ν определялась при 212°F (100°С). Эта индексация касается всесезонных масел, применяемых в автомобильной промышленности (трансмиссионные, моторные и т. д.).

коэффициент динамической вязкости

Потеря мощности гидросистем

Низкая вязкость рабочей жидкости (масло невысокой плотности) приводит к следующим негативным явлениям:

  • Падение объемного КПД насосов в результате возрастающих внутренних утечек.
  • Возрастание внутренних утечек в гидрокомпонентах всей гидросистемы – насосах, клапанах, гидрораспределителях, гидромоторах.
  • Повышенный износ качающих узлов и заклинивание насосов по причине недостаточной вязкости рабочей жидкости, необходимой для обеспечения смазки трущихся деталей.

Сжимаемость

Любая жидкость под действием давления сжимается. В отношении масел и СОЖ, используемых в машиностроительной гидравлике, эмпирически установлено, что процесс сжатия обратно пропорционален величине массы жидкости на ее объем. Величина сжатия выше для минеральных масел, значительно ниже для воды и гораздо ниже для синтетических жидкостей.

В простых гидросистемах низкого давления сжимаемость жидкости ничтожно мало влияет на уменьшение первоначального объема. Но в мощных машинах с гидроприводом высокого давления и крупными гидроцилиндрами этот процесс проявляет себя заметно. У гидравлических минеральных масел при давлении в 10,0 МПа (100 бар) объем уменьшается на 0,7%. При этом на изменение объема сжатия в небольшой степени влияют кинематическая вязкость и тип масла.

Оцените статью
Рейтинг автора
4,8
Материал подготовил
Егор Новиков
Наш эксперт
Написано статей
127
А как считаете Вы?
Напишите в комментариях, что вы думаете – согласны
ли со статьей или есть что добавить?
Добавить комментарий

Какова размерность коэффициента вязкости жидкости

Вязкость жидкости

Вязкость жидкости

Вязкость жидкости – это свойство реальных жидкостей оказывать сопротивление касательным усилиям (внутреннему трению) в потоке. Вязкость жидкости не может быть обнаружена при покое жидкости, так как она проявляется только при её движении. Для правильной оценки таких гидравлических сопротивлений, возникающих при движении жидкости, необходимо прежде всего установить законы внутреннего трения жидкости и составить ясное представление о механизме самого движения.

Содержание статьи

  • Физический смысл вязкости
  • Вязкость кинематическая, динамическая и абсолютная
  • Коэффициент вязкости жидкости
  • Методы измерения вязкости. Метод Стокса
  • Видео о вязкости

Как определить вязкость жидкости методом Стокса?

метод Стокса

Формулу определения вязкости Стокс вывел ещё в 1851 году.

Он получил выражение, описывающее действие силы трения (лобового сопротивления) на круглый объект, движущийся в вязкой жидкости с небольшим числом Рейнольдса.

Чтобы понять, как определять вязкость жидкости методом Стокса необходимо узнать теоретическое описание процесса, вывод формулы и сам описание самого метода.

Всё это и конкретные методы описаны далее в статье.

Содержание статьи

  • Что такое вязкость
  • Движение тела в жидкой среде
  • Формула вязкости
  • Определение вязкости методом Стокса
  • Видео методы определения вязкости

Вязкость жидкости. Методы определения вязкости жидкости

В промышленности, научной деятельности часто необходимо вычислить коэффициент вязкости жидкости. Работа с обычными или дисперсными средами в виде аэрозолей, газовых эмульсий требует знаний о физических свойствах этих веществ.

Коэффициент вязкости. Коэффициент динамической вязкости. Физический смысл коэффициента вязкости

Коэффициент вязкости – это ключевой параметр рабочей жидкости либо газа. В физических терминах вязкость может быть определена как внутреннее трение, вызываемое движением частиц, составляющих массу жидкой (газообразной) среды, или, более просто, сопротивлением движению.

коэффициент вязкости

Методы измерения вязкости жидкостных веществ

Выполнение процедуры определения вязкости жидкостных веществ принято называть вискозиметрией. На сегодняшний день измерение вязкости жидкостных веществ является вероятным благодаря очередным четырём методикам:

  1. Капиллярная методика. При выполнении данной методики необходимо присутствие двух ёмкостей, соединённых благодаря совокупности каналов из стекла с большим радиусом и достаточной длинны. Одновременно необходимы начальное представление о величине давления во всех ёмкостях. Жидкостное вещество размещается в канале из стекла, и данная жидкость конкретное время переливается из ёмкости в ёмкость. Последующие расчёты производятся с помощью уравнения Пуазейля (нахождение коэффициента вязкости жидкости). Инновационные вискозиметры производятся из сырья высокого качества и стойкости, которое способно переносить высокую температуры.
  2. Медицинская методика по Гессе. Для выполнения вычислений вязкости жидкостных веществ данным способом, необходимо присутствие двух одинаковых капиллярных устройств. В одном устройстве располагается среда с изначально установленной величиной внутреннего трения, а в другом расположена изучаемое жидкостное вещество. Далее производятся измерения двух величин времени и создание соотношения, благодаря которому присутствует возможность определиться с необходимым результатом.
  3. Ротационная методика необходимо присутствие устройства из цилиндров, имеющих общую ось вращения. Данная конструкция предусматривает расположение первого цилиндра во втором. Между цилиндрами вливается жидкостное вещество, после чего к цилиндру, который находится внутри прикладывается усилие с конкретной скоростью. Эта скорость передаётся жидкостному веществу, и вязкость будет определена с помощью различия в силе момента.
  4. Методика Стокса. Выполнение данного эксперимента потребует присутствия вискозиметра Гепплера, который представляет наполненный жидкостным веществом цилиндрическую ёмкость. Перед осуществлением данного опыта на цилиндрической ёмкости производятся две отметки, и после проведения опыта определяется расстояние между отметками. Далее погружается в жидкостное вещество шарик конкретного диаметра. Чтобы рассчитать скорость снижения положения шарика, засекается время его погружения от первой отметки к второй. Зная скорость погружения шарика, предоставляется возможность рассчитать вязкость жидкостного вещества.

Ньютоновские и неньютоновские среды

Ньютоновская жидкость – это такая жидкость, вязкость которой можно высчитать с помощью формулы Ньютона.

К таким средам относятся вода и растворы. Коэффициент вязкости жидкости в таких средах может зависеть от таких факторов, как температура, давление или строение атома вещества, однако градиент скорости всегда останется неизменным.

коэффициент вязкости жидкости

Неньютоновские жидкости – это такие среды, в которых упомянутое выше значение может изменяться, а значит, формула Ньютона здесь действовать не будет. К таким веществам относятся все дисперсные среды (эмульсии, аэрозоли, суспензии). Сюда же относится и кровь. Об этом более подробно поговорим далее.

Коэффициент вязкости: формула

В упрощенном виде процесс движения вязкой жидкости в трубопроводе можно рассмотреть в виде плоских параллельных слоев А и В с одинаковой площадью поверхности S, расстояние между которыми составляет величину h.

определение коэффициента вязкости жидкости

Эти два слоя (А и В) перемещаются с различными скоростями (V и V+ΔV). Слой А, имеющий наибольшую скорость (V+ΔV), вовлекает в движение слой B, движущийся с меньшей скоростью (V). В то же время слой B стремится замедлить скорость слоя А. Физический смысл коэффициента вязкости заключается в том, что трение молекул, представляющих собой сопротивление слоев потока, образует силу, которую Исаак Ньютон описал следующей формулой:

  • ΔV – разница скоростей движений слоев потока жидкости;
  • h – расстояние между слоями потока жидкости;
  • S – площадь поверхности слоя потока жидкости;
  • μ (мю) – коэффициент, зависящий от свойства жидкости, называется абсолютной динамической вязкостью.

В единицах измерения системы СИ формула выглядит следующим образом:

Здесь F – сила тяжести (вес) единицы объема рабочей жидкости.

Величина вязкости

В большинстве случаев коэффициент динамической вязкости измеряется в сантипуазах (сП) в соответствии с системой единиц СГС (сантиметр, грамм, секунда). На практике вязкость связана соотношением массы жидкости к ее объему, то есть с плотностью жидкости:

  • ρ – плотность жидкости;
  • m – масса жидкости;
  • V – объем жидкости.

Отношение между динамической вязкостью (μ) и плотностью (ρ) называется кинематической вязкостью ν (ν – по-гречески – ню):

Кстати, методы определения коэффициента вязкости разные. Например, кинематическая вязкость по-прежнему измеряется в соответствии с системой СГС в сантистоксах (сСт) и в дольных величинах – стоксах (Ст):

  • 1Ст = 10 -4 м 2 /с = 1 см 2 /с;
  • 1сСт = 10 -6 м 2 /с = 1 мм 2 /с.

Применение вязкость на практике

На сегодняшний день вискозиметры производятся из высокопрочного сырья, и их изготовление настаивает на применении инновационных технологий. Благодаря этому предоставляется возможность выполнять требуемые измерения при значительных температурных параметрах и большом давлении, не подвергая аппаратуру выходу со строя. Вязкость жидкостных веществ имеет огромное значение практически во всех отраслях производства, так как транспортирование, добывание и обработка различного сырья и материалов имеют зависимость от величины внутреннего трения жидкости.

Вязкость жидкостных веществ является ключевым значением и в медицине непосредственно, и для её аппаратуры, в частности. Попадание газовых веществ с помощью эндо-трахеальной трубки имеет зависимость от внутреннего трения конкретного газового вещества. В данной ситуации различно будет происходить отражение преобразования величины вязкости среды на проникании воздуха сквозь аппаратуру (зависит от структуры газового вещества).

Сложно разобраться самому?

Попробуй обратиться за помощью к преподавателям

Производство вакцинации и ввод разнообразных лекарств с помощью шприца, в свою очередь, является ярчайшим образцом воздействия вязкости среды. В данном случае говорится о перепадах давления на окончании иглы шприца во время введения лекарственных препаратов, невзирая на то, что начально было пренебрежено этим явлением. Образование повышенного давления на конце иголки шприца является результатом влияние внутреннего трения.

Из этого следует, что вязкость многих веществ является одной из физических величин, которая обладает огромным использованием на практике. В разнообразных сферах деятельности (особенно в производстве) понятие внутреннего трения и вязкости веществ упоминается очень частенько. В частности, работа простого медицинской или экспериментальной аппаратуры в лабораторных условиях зависит от уровня вязкости среды, которые используются в экспериментах и на практике.

Кровь как внутренняя среда организма

Как известно, 80 % крови составляет плазма, которая имеет жидкое агрегатное состояние, а остальные 20 % – это эритроциты, тромбоциты, лейкоциты и различные включения. Эритроциты человека имеют диаметр 8 нм. В неподвижном состоянии они формируют агрегаты в виде монетных столбиков, при этом существенно повышают вязкость жидкости. Если ток крови активен, эти «конструкции» распадаются, а внутреннее трение, соответственно, уменьшается.

Коэффициенты вязкости среды

Взаимодействие слоев среды друг на друга сказывается на характеристиках всей системы жидкости или газа. Вязкость – это один из примеров такого физического явления, как трение. Благодаря ей верхние и нижние слои среды постепенно выравнивают скорости своего тока, и в конечном итоге она приравнивается к нулю. Также вязкость можно характеризовать как сопротивление одного слоя среды другому.

Для описания таких явлений выделяют две качественные характеристики внутреннего трения:

  • динамический коэффициент вязкости (динамическая вязкость жидкости);
  • кинетический коэффициент вязкости (кинетическая вязкость).

Обе величины связаны уравнением υ = η / ρ, где ρ – плотность среды, υ – кинетическая вязкость, а η – динамическая вязкость.

динамическая вязкость жидкости

Вискозиметры

Вязкость измеряется в градусах Энглера (°Е), универсальных секундах Сейболта (“SUS) или градусах Редвуда (°RJ) в зависимости от типа применяемого вискозиметра. Три типа вискозиметров отличаются только количеством вытекающей жидкой среды.

Вискозиметр, измеряющий вязкость в европейской единице градус Энглера (°Е), рассчитан на 200 см 3 вытекающий жидкой среды. Вискозиметр, измеряющий вязкость в универсальных секундах Сейболта (“SUS или “SSU), используемый в США, содержит 60 см 3 испытываемой жидкости. В Англии, где используются градусы Редвуда (°RJ), вискозиметр проводит измерения вязкости 50 см 3 жидкости. Например, если 200 см 3 определенного масла течет в десять раз медленнее, чем аналогичный объем воды, то вязкость по Энглеру составляет 10°Е.

Поскольку температура является ключевым фактором, изменяющим коэффициент вязкости, то измерения обычно проводятся сначала при постоянной температуре 20°С, а затем при более высоких ее значениях. Результат, таким образом, выражается путем добавления соответствующей температуры, например: 10°Е/50°С или 2,8°Е/90°С. Вязкость жидкости при 20°С выше, чем ее вязкость при более высоких температурах. Гидравлические масла имеют следующую вязкость при соответствующих температурах:

190 сСт при 20°С = 45,4 сСт при 50°С = 11,3 сСт при 100°С.

коэффициент вязкости воды

Практическое применение вискозиметрам

Определение вязкости жидкости имеет большое практическое значение в нефтеперерабатывающей промышленности. При работе с многофазными, дисперсными средами важно знать их физические свойства, особенно внутреннее трение. Современные вискозиметры сделаны из прочных материалов, при их производстве задействуются передовые технологии. Все это в совокупности позволяет работать с высокой температурой и давлением без вреда для самого оборудования.

Вязкость жидкости играет большую роль в промышленности, потому что транспортировка, переработка и добыча, например, нефти зависят от значений внутреннего трения жидкостной смеси.

методы определения вязкости жидкости

Перевод значений

Определение коэффициента вязкости происходит в разных системах (американской, английской, СГС), и поэтому часто требуется перевести данные из одной мерной системы в другую. Для перевода значений вязкости жидкости, выраженных в градусах Энглера, в сантистоксы (мм 2 /с) используют следующую эмпирическую формулу:

  • 2°Е = 7,6 × 2 × (1-1/23) =15,2 × (0,875) = 13,3 сСт;
  • 9°Е = 7,6 × 9 × (1-1/93) =68,4 × (0,9986) = 68,3 сСт.

С целью быстрого определения стандартной вязкости гидравлического масла формула может быть упрощена следующим образом:

Имея кинематическую вязкость ν в мм 2 /с или сСт, можно перевести ее в коэффициент динамической вязкости μ, используя следующую зависимость:

Пример. Суммируя различные формулы перевода градусов Энглера (°Е), сантистоксов (сСт) и сантипуазов (сП), предположим, что гидравлическое масло с плотностью ρ=910 кг/м 3 имеет кинематическую вязкость 12°Е, что в единицах сСт составляет:

ν = 7,6 × 12 × (1-1/123) = 91,2 × (0,99) = 90,3 мм 2 /с.

Поскольку 1сСт = 10 -6 м 2 /с и 1сП = 10 -3 Н×с/м 2 , то динамическая вязкость будет равна:

коэффициент вязкости газа

Какую роль играет вязкость в медицинском оборудовании?

Поступление газовой смеси через эндотрахеальную трубку зависит от внутреннего трения этого газа. Изменение значений вязкости среды здесь по-разному отражается на проникновении воздуха через аппарат и зависит от состава газовой смеси.

Введение лекарственных препаратов, вакцин через шприц тоже является ярким примером действия вязкости среды. Речь идет о перепадах давления на конце иголки при впрыскивании жидкости, хотя изначально полагали, что этим физическим явлением можно пренебречь. Возникновение высокого давления на наконечнике – это результат действия внутреннего трения.

Заключение

Вязкость среды – это одна из физических величин, которая имеет большое практическое применение. В лаборатории, промышленности, медицине – во всех этих сферах понятие внутреннего трения фигурирует очень часто. Работа простейшего лабораторного оборудования может зависеть от степени вязкости среды, которая используется для исследований. Даже перерабатывающая промышленность не обходится без знаний в области физики.

Измерение и индексация

В соответствии с международными стандартами ISO, коэффициент вязкости воды (и прочих жидких сред) выражается в сантистоксах: сСт (мм 2 /с). Измерения вязкости технологических масел должны проводиться при температурах 0°С, 40°С и 100°С. В любом случае в коде марки масла вязкость должна указываться цифрой при температуре 40°С. В ГОСТе значение вязкости дается при 50°С. Марки, наиболее часто применяемые в машиностроительной гидравлике, варьируются от ISO VG 22 до ISO VG 68.

Гидравлические масла VG 22, VG 32, VG 46, VG 68, VG 100 при температуре 40°С имеют значения вязкости, соответствующие их маркировке: 22, 32, 46, 68 и 100 сСт. Оптимальная кинематическая вязкость рабочей жидкости в гидросистемах лежит в диапазоне от 16 до 36 сСт.

Американское Общество автомобильных инженеров (Society of Automotive Engineers – SAE) установило диапазоны изменения вязкости при конкретных температурах и присвоило им соответствующие коды. Цифра, следующая за буквой W, – абсолютный динамический коэффициент вязкости μ при 0°F (-17,7°С), а кинематическая вязкость ν определялась при 212°F (100°С). Эта индексация касается всесезонных масел, применяемых в автомобильной промышленности (трансмиссионные, моторные и т. д.).

коэффициент динамической вязкости

Потеря мощности гидросистем

Низкая вязкость рабочей жидкости (масло невысокой плотности) приводит к следующим негативным явлениям:

  • Падение объемного КПД насосов в результате возрастающих внутренних утечек.
  • Возрастание внутренних утечек в гидрокомпонентах всей гидросистемы – насосах, клапанах, гидрораспределителях, гидромоторах.
  • Повышенный износ качающих узлов и заклинивание насосов по причине недостаточной вязкости рабочей жидкости, необходимой для обеспечения смазки трущихся деталей.

Сжимаемость

Любая жидкость под действием давления сжимается. В отношении масел и СОЖ, используемых в машиностроительной гидравлике, эмпирически установлено, что процесс сжатия обратно пропорционален величине массы жидкости на ее объем. Величина сжатия выше для минеральных масел, значительно ниже для воды и гораздо ниже для синтетических жидкостей.

В простых гидросистемах низкого давления сжимаемость жидкости ничтожно мало влияет на уменьшение первоначального объема. Но в мощных машинах с гидроприводом высокого давления и крупными гидроцилиндрами этот процесс проявляет себя заметно. У гидравлических минеральных масел при давлении в 10,0 МПа (100 бар) объем уменьшается на 0,7%. При этом на изменение объема сжатия в небольшой степени влияют кинематическая вязкость и тип масла.

Оцените статью
Рейтинг автора
4,8
Материал подготовил
Егор Новиков
Наш эксперт
Написано статей
127
А как считаете Вы?
Напишите в комментариях, что вы думаете – согласны
ли со статьей или есть что добавить?
Добавить комментарий